Hydrogen Phases on the Surface of a Strongly Magnetized Neutron Star
نویسندگان
چکیده
The outermost layers of some neutron stars are likely to be dominated by hydrogen, as a result of fast gravitational settling of heavier elements. These layers directly mediate thermal radiation from the stars, and determine the characteristics of X-ray/EUV spectra. For a neutron star with surface temperature T <∼ 10 K and magnetic field B >∼ 10 G, various forms of hydrogen can be present in the envelope, including atom, poly-molecules, and condensed metal. We study the physical properties of different hydrogen phases on the surface of a strongly magnetized neutron star for a wide range of field strength B and surface temperature T . Depending on the values of B and T , the outer envelope can be either in a nondegenerate gaseous phase or in a degenerate metallic phase. For T >∼ 10 K and moderately strong magnetic field, B <∼ 10 G, the envelope is nondegenerate and the surface material gradually transforms into a degenerate Coulomb plasma as density increases. For higher field strength, B >> 10 G, there exists a first-order phase transition from the nondegenerate gaseous phase to the condensed metallic phase. The column density of saturated vapor above the metallic hydrogen decreases rapidly as the magnetic field increases or/and temperature decreases. Thus the thermal radiation can directly emerge from the degenerate metallic hydrogen surface. The characteristics of surface X-ray/EUV emission for different phases are discussed. A separate study concerning the possibility of magnetic field induced nuclear fusion of hydrogen on the neutron star surface is also presented. Subject headings: stars: neutron – stars: atmospheres – magnetic fields – atomic processes – equation of state – radiation mechanisms: thermal
منابع مشابه
Atmospheres and Spectra of Strongly Magnetized Neutron Stars – Iii. Partially Ionized Hydrogen Models
We construct partially ionized hydrogen atmosphere models for magnetized neutron stars in radiative equilibrium with surface fields B = 1012−5×1014 G and effective temperatures Teff ∼ a few×105−106 K. These models are based on the latest equation of state and opacity results for magnetized, partially ionized hydrogen plasmas that take into account various magnetic and dense medium effects. The ...
متن کاملPolarization Modes in a Strongly Magnetized Hydrogen Gas
Propagation of high-frequency radiation in an anisotropic medium can be described in terms of two normal modes with different polarizations and different absorption coefficients. We investigate the properties of the normal modes in a strongly magnetized hydrogen gas for conditions expected in atmospheres of isolated neutron stars. We use the Kramers-Kronig relations to obtain the polarizability...
متن کاملAtmospheres of Magnetized Neutron Stars: Vacuum Polarization and Partially Ionized Models
We construct hydrogen atmosphere models for magnetized neutron stars in radiative equilibrium with surface fields B = 10−5×10 G and effective temperatures Teff ∼ a few×10 5 −10 K by solving the full radiative transfer equations for both polarization modes in the magnetized hydrogen plasma. The atmospheres directly determine the characteristics of thermal emission from isolated neutron stars. We...
متن کاملThermal Structure and Cooling of Superfluid Neutron Stars with Accreted Magnetized Envelopes
We study the thermal structure of neutron stars with magnetized envelopes composed of accreted material, using updated thermal conductivities of plasmas in quantizing magnetic fields, as well as equation of state and radiative opacities for partially ionized hydrogen in strong magnetic fields. The relation between the internal and local surface temperatures is calculated and fitted by an analyt...
متن کاملPartially ionized atmospheres of neutron stars with strong magnetic fields
We construct hydrogen atmosphere models for strongly magnetized neutron stars in thermodynamic equilibrium, taking into account partial ionization. The presence of bound states affects the equation of state, absorption coefficients, and polarizability tensor of a strongly magnetized plasma. Therefore the partial ionization influences the polarization vectors and opacities of normal electromagne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997